Lesson 13.1 Exploring Periodic Data

Vocabulary and Key concepts:

The amplitude of a periodic function is:

[image: image1.png]13.2 Angles, Special Right Triangles, Sine, and Cosine

 s6o " 1
I Review: Basic Angles from Geometry 1~ . ——t—-
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A periodic function repeats a pattern of _____________________________________.

A cycle is ___________________________________________________________.

The period of a function is _______________________________________________.

Examples:

1. Analyze this periodic function. Identify one cycle in two different ways. Then determine the period of the function.
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2. Determine whether the function is or is not periodic. If it is, find the period.
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3. Find the amplitude of the function in Example 2.

Extra Practice:
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Example:

4. An oscilloscope is an instrument that displays electrical waves on a screen. The oscilloscope screen at the right shows the graph of the alternating current electricity (in volts) supplied to homes in the United States. Find the period and amplitude.
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Extra Practice:
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[image: image152.png]Definition Cosecant, Secant, and Cotangent Functions

The cosecant (csc), secant (sec), and cotangent (cot) functions are defined
using reciprocals. Their domains do not include the real numbers ¢ that make a
denominator zero.
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[image: image2.png]m Measuring an Angle in Standard Position

Find the measure of the angle at the right. y

The angle measures 20° more than

a straight angle of 180°. 2 x

@ Since 180 + 20 = 200, the measure of the angle is 200°.

@ One full rotation contains 360 degrees. How many degrees are in one quarter of a
rotation? In one half of a rotation? In three quarters of a rotation?
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Sketch each angle in standard position.
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y Y Y
315°
36° X X
- —150°
36° . 315° 150°
° Counterclockwise Counterclockwise Clockwise

© Sketch each angle in standard position.
a. 85° b. —320° e 180°

Explanation: y
135°  Angles that have measures
135° and —225° are

RPYYD 3
225 coterminal.





[image: image5.png]Problem: Find the measure of an angle between O

and 360 degrees coterminal with each given angle.
Hint: add or subtract 360 degrees (1 rotation) o get within O and 360 degrees.

1) 390°

2.)-200°

3.) 500°





13.2 Angles and the Unit Circle (Day 2)
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[image: image10.png]Today, our objective is to use these basic angles to find
the sine and cosine of any main angle. A helpful tool
for this is the unit circle: a circle whose radius is 1.

A Let P be a point on
the circle.
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Picturing these angles up against the four quadrants helps us know the signs
(ositive or negative) of sin 6 and cose.

When we combine these +/- signs
with sine and cosine from the special
right triangles, we can find sine and
cosine for any main angle.

Note: When drawing a special right
triangle to find sine or cosine,
always draw it using the x-axis.




[image: image12.png]We can use the idea of the unit circle (radius of 1) and the
concept that coss —— x-coordinate and sine —— y-coordinate 10

find the sine and cosine of the quadrantal angles (0°, 90°,
180° and 270°).
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Recall that we have been measuring all of our angles in degrees. Just like
we can measure temperature in Fahrenheit and Celsius, we have 2 ways
o measure angles: degrees and radians.

Where a radian comes from:
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arc equals the length of the radius of the circle.
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Examples

1.  Write each measure in radians.  Express the answer in terms of π and as a decimal rounded to the nearest hundredth.

(a)  60o




(b)  -225o
2.  Write each measure in degrees.  Round your answer to the nearest degree, if necessary.

(a)  
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[image: image19.png]13.3 Arc Length (Day 1)

We can find the length of any intercepted arc by setting up 2 proportions:

Arc Length Formula: (b




Examples

Use each circle to find the length of the indicated arc.  Round answers to the nearest tenth.

1. 



2.  



3.  
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Algebra II Section 13.3 (Day Two)
Radian Measure

Here is what we have done so far and here is how it all comes together!


13.2 ( angles in degrees,
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, special right triangles: 
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13.2 ( Using 2 main triangles to find 
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and 
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for any main angle in degrees.
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Remember, 
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13.3 Part 1( measuring angles in radians and degrees. Every angle can be measured in both ways!
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Part II ( Using the 2 main triangles and conversion factors to find 
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sin

 and 
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cos

 for any main angle in radians.  (Just like 13.2, but angles are given in radians and must be converted to degrees.) In which quadrant, or on which axis, does the terminal side of each angle lie?

Note: We are more used to thinking in terms of degrees, so as we get started, convert to degrees first and then answer the question.

Problem 1 is an example.
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Note: 
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is 180 degrees and 
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of 180 is 120 thus 120° is 
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Find the following angle and identify what quadrant or axis the terminal side lays:
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Patterns:
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	Use 30-60-90 triangle. Makes 30 degree angle with x-axis.
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	Use 45-45-90 triangle. Makes 45 degree angle with x-axis.

Both are
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	Use 30-60-90 triangle. Makes 60 degree angle with x-axis.
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The measure 
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 of an angle in standard position is given.  Find the exact values of 
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and 
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.  Problem 1 is an example.

[image: image47.wmf]°

=

°

=

°

×

=

45

4

180

180

4

4

.)

1

p

p

p

radians

; 1st quadrant and 45-45-90 triangle.


[image: image48.wmf]2

2

2

1

45

sin

4

sin

2

2

2

1

45

cos

4

cos

=

=

=

°

=

=

=

=

°

=

hyp

opp

hyp

adj

p

p



[image: image49.wmf]radians

radians

radians

3

2

.)

4

2

3

.)

3

6

11

.)

2

p

p

p

-


Name _______________________

Algebra II ~ 13.4 ~ Graphing the Sine Function

The graphs of the sine and cosine functions are periodic, because of the nature of angles.  Every 360° (or 2
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), the values for sine and cosine repeat themselves.  This is shown in the graphs of sine and cosine functions.  Today, we will focus only on the graph of the sine function.

Review)  Graph 
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We know that we can use a table to help draw this graph.  
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 is the independent variable and 
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 is the dependent variable.  This means that we choose a value for
[image: image54.wmf]x

, and the value for 
[image: image55.wmf]y

 depends on
[image: image56.wmf]x

.


	
[image: image57.wmf]x


	-2
	0
	2
	4

	
[image: image58.wmf]1

2

+

=

x

y


	
	
	
	


1)  Graph 
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To start this graph, we can use a table.  The more sine graphs you do, the less you will feel the need to use a table.  
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 is the independent variable and 
[image: image61.wmf]y

is the dependent variable.  Since we get to choose values for the independent variable (
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), we will choose to use the quadrantal angles, since these values are the easiest to work with:  0°, 90°, 180°, 270°, and 360°.  In radians, these are
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I.  Amplitude

2)  Graph 
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From now on, any sine graph that we draw is based on the original sine graph.  


[image: image75.wmf]q

sin

3

=

y

 
[image: image76.wmf]q

sin

3

·

=


So we are going to start with the original sine graph, but multiply all of the ____-values by 3.


The 3 in this equation gives us the _________________ of the periodic function.

3)  Graph 
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So we are going to start with the original sine graph, but multiply all of the y-values by _______. 


The “-“in front of this equation ____________ the periodic function.

4)  Graph 
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The “-“ _______ the sine graph and the “2” is the _____________ of the function.

 

In all of these graphs, the period of the sine function has been ________.

II. Changing the period of a sine function
The sine functions that we are graphing today can be characterized by the equation 
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:  determines the direction of the sine function (regular or flipped)
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:  is defined as the number of cycles between 0 and 2π; “b” is the number that is used to determine the period of the function.
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” is used to determine the numbers on the notches on the graph.  The graph looks the same.

5)  Graph 
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 so the period (last notch) is ______ = _____.  Then distribute other notches evenly in fourths.

 

This means that we can actually fit ______ cycles between 0 and 2
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.  The actual graph would look ___________.

6)  Graph
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 and period ______ = _____.  Then distribute other notches evenly in fourths.

 

This means that we can actually fit ______ cycles between 0 and 2
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.  The actual graph would look ___________.

III. Putting it all together
7)  Sketch one cycle of each sine curve.  Assume
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.  Write an equation for each graph.

a)  Amplitude 2, period 
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EQUATION:  _______________

 

b)  Amplitude
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EQUATION:  ________________





 


8)  Find the period of each sine curve.  Then write an equation for each sine function.


a)  







b)  

   

Period = _______





Period = _______

Equation:  _______________




Equation:  ______________

Algebra II ~ 13.5 ~ Graphing the Cosine Function

The graphs of the sine and cosine functions are periodic, because of the nature of angles.  Every 360° (or 2
[image: image95.wmf]p

), 

the values for sine and cosine repeat themselves.  This is shown in the graphs of sine and cosine functions.  

Today, we will focus only on the graph of the cosine function.

Review:  Graph 
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Graphing the cosine function works very similarly to graphing the sine function.   Once we have the original 

graph, we can alter the amplitude and period just like we did for the sine function.

The cosine functions that we are graphing today can be characterized by the equation 
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:  determines the direction of the sine function (regular or flipped)
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:  is defined as the number of cycles between 0 and 2π; “b” is the number that is used to determine the period of the function.          
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” is used to determine the numbers on the notches on the graph.  The graph looks the same.

1)  Graph 
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2) Graph 
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Amplitude = ______

b = ______ so period = ________


What does the “-“ do?  ___________

3) Graph 
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Amplitude = ______

b = ______ so period = ________

4)  Graph 
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Amplitude = ______

b = ______ so period = ________

5)  Write a cosine function for a cosine graph with an amplitude of 
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 and a period of 4.

6) Write a cosine function for a cosine graph with a flip, an amplitude of 5, and a period of
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7)  Find the period and amplitude of the cosine function.  At what values of 
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 do the maximum value(s), minimum value(s) and zeros occur?  What is the range?  What is the cosine function?











Period = _______











Amplitude = _______











Max value(s) = _______











Min value(s) = ________











Zero(s) = ________











Range = ________











Cosine function:  ___________
Lesson 13.8: Reciprocal Trigonometric Functions

You can evaluate reciprocal trigonometric functions by using the definitions below:


Examples: Using reciprocals

1. Find csc 60°





2. Suppose cos θ =
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. Find sec θ.

3. Find the sec 45°





4. Suppose tan θ = 
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. Find the cot θ.

5. cot 
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6.  sec (-π)

Practice 13-8
Reciprocal Trigonometric Functions

Evaluate each expression. Each angle is given in radians. 
1.    csc 
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                               2.  sec -
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3. cot ((
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4.
cot (-
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         5. cot (


6.
csc 
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Evaluate each expression. Write your answer in exact form. If the expression                                                    is undefined, write undefined.

7.
sec (-45°)
8.
cot 90°
9.
sec 30°
10.
csc (-30°)
11.
cot ((30°)
12.
csc ((45°)
13.
csc 180°
14.
cot 45°

15.
sec 90°
16.
sec ((30°)
17.
csc ((60°)
18.
sec 60°

19.
Suppose tan ( = 
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. Find cot ( 
20.
Suppose sin ( = 
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Determine whether the function is or is not periodic. If it is, find the period.





For the function below, identify one cycle in two different ways. Then determine the period of the function.





�





�





�





Sketch the graph of a sound wave with a period of 0.5 and an amplitude of 2.





Find the amplitude of the function.
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